当前位置:首页 > 实用范文

初中教育案例与反思

时间:2024-07-19 10:30:53
初中教育案例与反思[本文共5385字]

前言:初中教育案例与反思为的会员投稿推荐,但愿对你的学习工作带来帮助。

反思性教学是指教师通过教学实践不断发现和解决在教学的过程中所出现的一系列问题,并通过自己的反思解除疑虑、提高教学质量,从而进入学者型教师行列的一个过程,与之相关的初中的教育案例与反思要如何写?下面小编为大家整理了初中教育案例与反思,欢迎参考。

 初中教育案例与反思篇一

一、教学目标:

1、知道一次函数与正比例函数的定义;

2、理解掌握一次函数的图象的特征和相关的性质;

体会数形结合思想。

3、弄清一次函数与正比例函数的区别与联系;

4、掌握直线的平移法则简单应用;

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学媒体:大屏幕。

四、教学设计简介:

因为这是初三总复习节段的复习课,在这之前已经复习了变量、函数的定义、表示法及图象,而本节的教学任务是一次函数的基础知识及其简单的应用,没有涉及实际应用。为了节约学生的时间,打造高效课堂,我开门见山,直接向学生展示教学目标,然后让学生根据本节课的复习目标进行联想回顾,变被动学习为主动学习。例如,在“图象及其性质”环节中,老师让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充纠正。这样,使无味的复习课变得活跃一些,增强学习气氛。随后教师就用大屏幕展示出标准答案,然后教师组织学生以比赛的形式做一些针对性的练习。为了巩固知识点,学生解决每一个问题时都要求其说出所运用的知识点。

五、教学过程:

1、一次函数与正比例函数的定义

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是x的一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2.一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练一:

1、指出下列函数中的正比例函数和一次函数:①y

= x +1;②y = - x/5; ③y = 3/x ;④y = 4x ;⑤y =x(3x+1)-3x ;⑥y=3(x-2);⑦y=x/5-1/2。

2、下列给出的两个变量中,成正比例函数关系的是:A、少年儿童的身高和年龄;

B、长方形的面积一定,它的长与宽; C、圆的面积和它的半径;

D、匀速运动中速度固定时,路程与时间的关系。

3、对于函数y

=(m+1)x + 2- n,当m、n满足什么条件时为正比例函数?当m、n满足什么条件时为一次函数?

3、正比例函数、一次函数的图象和性质:

正比例函数

y=kx

k>0 图象 位置(经过的变化趋势(从增减性(y随着x的变化情况) 象限) 一三

左至右) 上 升 y随着x的 增大而增大

k<0 二四 下 降

y随着x的 增大而增大

7、k,b的符号与直线y=kx+b(k≠0)

的位置关系:

k的符号决定了直线y=kx+b(k≠0) ;b的符号决定了直线y=kx+b与y轴的交点 。当k>0时,直线 ; 当k<0时,直线 。

当b>0时,直线交于y轴的 ;当b<0时,直线交于y轴的 。

为此直线y=kx+b(k≠0) 的位置有4种情况,分别是:

当k>0, b>0时,直线经过 ;当k>0, b<0时,直线经过 ;

当k<0,b>0时,直线经过 ;当k<0,b<0时,直线经过 。

基础训练二:

1.写出一个图象经过点(1,-

3)的函数解析式为 。

2.直线y

= - 2X - 2 不经过第 象限,y随x的增大

而 。

3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是

4.已知正比例函数

y =(3k-1)x,,若y随x的增大而增大,则k的取值范围是 。

5、过点(0,2)且与直线y=3x平行的直线是

6、若正比例函数y

=(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是 。

7、若函数y

= ax+b的图像过一、二、三象限,则ab 0。

8、若y-2与x-2成正比例,当x=-2时,y=4,则x=

时,y = -4。

9、直线y=-

5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

10、将直线y

= -2x-2向上平移2个单位得到直线 ; 将它向左平移2个单位得到直线 。

综合训练:已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。

六、教学反思:

本节课是我这学期做的一节汇报课。教学任务基本完成,最后剩下一道综合训练题没来得及探讨,留作了课后作业。从本节课的设计上看,我自认为知识全面,讲解透彻,条理清晰,系统性强,讲练结合,训练到位,一

节课下来后学生在基础知识方面不会有什么漏洞。因为复习课的课堂容量比较大,需要展示给学生的知识点比较多,训练题也比较多,所以我选择在多媒体上课。应该说在设计之初,我是在两种方案中选出的一种为学生节省时间的复习方法,课前的工作全由教师完成,教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。可没想到,在课的进行中,我就听到有的教师在切切私语,都是初三学生了,怎么好象没有几个学习的。我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。以致于面对简单的问题都卡,思维不连续。纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

课后我找到了学委和科代表,请他们协助我一同反思本节课的优缺点,并把在以往的章末复习时曾采取过的另一种复习方案阐述给他们听,就是课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

但是在初三总复习时,我理解学生的忙,所以能包办的我就一律代做,以为这就是帮学生减轻负担,学生自己去做的事是少了,可是需要学生被动记忆的知识多;教师把一节设计的井井有条,想要学生在这一节课里收获更多,但被动的学生并没有全身心的投入到学生中去,降低了课堂效率,又把好多任务压到课下,最后教师减轻学生的课后负担的想法还是落空了。

通过这节复习课的教学让我从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

 初中教育案例与反思篇二

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法

五、教具、学具

教具:多媒体课件

学具:三角板、量角器

六、教学媒体:大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思

师:大家都知道三角形的内角和是180? ,那么四边形的内角和,你知道吗? 活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360?。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360?。 接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180?的和是540?。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180?的和减去一个周角360?。结果得540?。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180?的和减去一个平角180?,结果得540?。

方法4:把五边形分成一个三角形和一个四边形,然后用180?加上360?,结果得540?。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720?,十边形内角和是1440?。

(二)引申思考,培养创新

师:通过前面的讨论,你能知道多边形内角和吗?

活动三:探究任意多边形的内角和公式。

思考:(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180?的和,五边形内角和是3个180?的和,六边形内角和是4个180?的和,十边形内角和是8个180?的和。

发现2:多边形的边数增加1,内角和增加180?。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)·180。

(三)实际应用,优势互补

1、口答:(1)七边形内角和(

)

(2)九边形内角和( )

(3)十边形内角和( )

2、抢答:(1)一个多边形的内角和等于1260?,它是几边形?

(2)一个多边形的内角和是1440? ,且每个内角都相等,则每个内角的度数是( )。

3、讨论回答:一个多边形的内角和比四边形的内角和多540?,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:练习册第93页1、2、3

八、教学反思:

1、教的转变

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者

、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画

板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层 面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的 思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生, 学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解 决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向, 判断发现的价值。

 初中教育案例与反思篇三

一、教学目标:

1、知道一次函数与正比例函数的定义.

2、理解掌握一次函数的图象的特征和相关的性质;

体会数形结合思想。

3、弄清一次函数与正比例函数的区别与联系.

4、掌握直线的平移法则简单应用.

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学设计简介:

因为这是初三总复习节段的复习课,在这之前已经复习了变量、函数的定义、表示法及图象,而本节的教学任务是一次函数的基础知识及其简单的应用,没有涉及实际应用。为了节约学生的时间,打造高效课堂,我开门见山,直接向学生展示教学目标,然后让学生根据本节课的复习目标进行联想回顾,变被动学习为主动学习。例如,在“图象及其性质”环节中,老师让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充纠正。这样,使无味的复习课变得活跃一些,增强学习气氛。随后教师就用大屏幕展示出标准答案,然后教师组织学生以比赛的形式做一些针对性的练习。为了巩固知识点,学生解决每一个问题时都要求其说出所运用的知识点。

四、教学过程:

1、一次函数与正比例函数的定义

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2.一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练一:

(1)、指出下列函数中的正比例函数和一次函数:①y = x +1;②y = - x/5; ③y = 3/x ;④y = 4x ;⑤y =x(3x+1)-3x ;⑥y=3(x-2);⑦y=x/5-1/2。

(2)、下列给出的两个变量中,成正比例函数关系的是:

A、少年儿童的身高和年龄;B、长方形的面积一定,它的长与宽;

C、圆的面积和它的半径;D、匀速运动中速度固定时,路程与时间的关系。

所以我选择在多媒体上课。应该说在设计之初,我是在两种方案中选出的一种为学生节省时间的复习方法,课前的工作全由教师完成,教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。可没想到,在课的进行中,我就听到有的教师在切切私语,都是初三学生了,怎么好象没有几个学习的。我也感觉到这节课确实有一大部分学生注意力涣散,没有全身心地投入到学习中去。以致于面对简单的问题都卡,思维不连续。纠其原因,是我没有把学生学习的积极性充分调动起来,学生没有发挥出学习的主动性。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

课后我找到了科代表,请他们协助我一同反思本节课的优缺点,并把在以往的章末复习时曾采取过的另一种复习方案阐述给他们听,就是课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

但是在初三总复习时,我理解学生的忙,所以能包办的我就一律代做,以为这就是帮学生减轻负担,学生自己去做的事是少了,可是需要学生被动记忆的知识多;教师把一节设计的井井有条,想要学生在这一节课里收获更多,但被动的学生并没有全身心的投入到学生中去,降低了课堂效率,又把好多任务压到课下,最后教师减轻学生的课后负担的想法还是落空了。

总结记录

一节课结束或一天的教学任务完成后,我们应该静下心来细细想想:这节课总体设计是否恰当,教学环节是否合理,讲授内如一位教师在让学生进行分数应用题的综合训练时出了这样一道题:一套课桌椅的价格是48元,其容是否清晰,教学手段的运用是否充分,重点、难点是否突出;今天我有哪些行为是正确的,哪些做得还不够好,哪些地方需要调整、改进;学生的积极性是否调动起来了,学生学得是否愉快,我教得是否愉快,还有什么困惑等。把这些想清楚,作一总结,然后记录下来,这样就为今后的教学提供了可资借鉴的经验。经过长期积累,我们必将获得一笔宝贵的教学财富。

你也可以在搜索更多本站小编为你整理的其他初中教育案例与反思范文。

《初中教育案例与反思[本文共5385字].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式